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Abstract

A very common problem in science and engineering is the determination of the effects of uncertainty or variation in
parameters and data on the output of a deterministic nonlinear operator. For example, such variations may describe
the effect of experimental error or may arise as part of a sensitivity analysis of the model. The Monte-Carlo Method is
a justifiably popular tool for analyzing such effects. It does, however, require many evaluations of the operator and it
is difficult to extract precise information about the accuracy of any particular result. In this paper, we borrow techniques
from a posteriori error analysis for finite element methods to compute information about the derivative of an operator with
respect to its parameters. These techniques employ the generalized Green’s function to describe how variation propagates
into the solution around localized points in the parameter space. We show how this derivative information can be used
either to create a higher order method or produce an error estimate for information computed from a given representation.
In the latter case, this provides the basis for adaptive sampling according to the variation in the output values. Both the
higher order method and the adaptive sampling method are generally orders of magnitude faster than Monte-Carlo meth-
ods in the case that the parameter space is not too high dimensional.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we study an important and ubiquitous problem in science and engineering that can be
described abstractly like this: suppose that a deterministic nonlinear operator & maps a space of inputs, con-
sisting of data and parameters, into a space of outputs so that to each fixed input state, & associates a unique
output state. In our particular case, & is the solution operator for a differential equation. We consider the
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situation in which functions, parameterized by some variable, are substituted for the data and parameters in
Z , rather than individual points. The problem is to describe the resulting output function.

One frame for this problem is uncertainty analysis. In this setting, some of the data and/or the parameters
for # are unknown within a given range and/or subject to random variation, e.g. as a result of experimental or
modeling error. The problem is to determine the effect of the uncertainty or variation on the output of the
operator. It is natural to weight different scenarios with different probabilities and to consider the input to
be a random vector associated with some probability distribution. The output then becomes a random vector
associated with a new distribution.

To illustrate, we plot the output distribution of the nonlinear function of one parameter ¢(1) = tanh(21)/
tanh(2) for several distributions of the parameter 4 on [—1,1] along with ¢ in Fig. 1. The function ¢ acts in
a nearly linear fashion on the “narrow” normal distributions with small variance, so the resulting distributions
are again approximately normal. For “wide” distributions with large variance, the nonlinear behavior of ¢
leads to increased concentration of values at the boundaries.

Another frame for this problem is sensitivity analysis, in which the goal is to quantify the sensitivity of the
output information computed from a model with respect to variations in the input parameters. As well as
revealing fundamental stability properties of a model, sensitivity analysis also has important applications.
For example, it can be used to estimate the necessary experimental accuracy. Unfortunately, it is usually very
difficult to obtain accurate a priori bounds on the effects of variations in parameters. For example, a Gronwall
argument is a standard tool for evolutionary problems and it yields bounds that grow exponentially in time
regardless of the true behavior.

The Monte-Carlo method is a deservedly popular tool for determining the effects of variation in parameters
and data on the output of a nonlinear function. In this approach, a sample of the input space is selected at
random according to its distribution, and the model is solved for these parameter values. The resulting collec-
tion of output values form a pointwise sample of the output of the function and are used to approximate any
desired information, such as the distribution. The Monte-Carlo method converges robustly, is easy to imple-
ment, and is relatively immune to the “curse of dimensionality”. It is used throughout science and engineering,
and it is no exaggeration to state that a good portion of the world’s computing resources for science and engi-
neering are used for Monte-Carlo computations.

On the other hand, the Monte-Carlo method generally converges slowly in the sense of requiring a large
number of simulations in order to achieve good accuracy. For example, consider the Monte-Carlo approxi-
mation 37 g()/n to the average value J,g(2)d2/Vol(A) of a function g over a domain A, where {4}/, is
a set of points chosen independently at random from A. The error is

Zg (A) — Vol Voll ) / g(A)da,

which has variance given by
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Fig. 1. On the left, we plot normal input distributions for 4 (N((),az), ¢ = {0.01,0.05,0.1,0.3}) as well as the uniform distribution. We plot
the function ¢ in the middle. On the right, we plot the output distributions for ¢g(4).
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The Law of the Iterated Logarithm implies that with probability 1, for any C > 1, all but a finite number of the
errors €(n) are bounded above and below by

ica\/Zloglogn
7 .
To illustrate, we compute the average value of )uf + 2; over [—1,1]x [—1,1] and plot the results in Fig. 2. When
the operator . is expensive or difficult to evaluate, the Monte-Carlo method is expensive to the point of being
impractical.

Also, it is difficult to determine how to sample the input space in order to efficiently represent the output
distribution when % is a complicated, nonlinear operator. Simply sampling according to the distribution of
the input may not suffice. For example, accurately representing the output corresponding to a uniform input
distribution efficiently in the example in Fig. 2 requires increased sampling near the boundaries.

In this paper, we present a different approach for ascertaining the effects of variations in parameters and
data on a model in the case that the model depends smoothly and deterministically on the inputs. The focus
on deterministic models, which may be affected by random processes through parameters and data, is worth
emphasizing. Such problems have distinct features as compared to models described by stochastic differential
equations that can be exploited profitably.

Our approach is based on techniques borrowed from a posteriori error analysis for finite element methods.
The goal of a posteriori error analysis is to provide an accurate error estimate of an approximate solution
using information obtained from the numerical solution as much as possible (see [1,2]). One avenue [3-5]
to a posteriori error analysis uses variational arguments involving the generalized Green’s function. The gen-
eralized Green’s function solves the (linearized) adjoint problem with data specific to the information to be
computed from the solution of the original problem and describes how local variation in the model, param-
eters, and data propagates into the solution. We apply this a posteriori analysis to the problem of determining
the effects of variations in parameters and data on a model and show how information obtained from the gen-
eralized Green’s function can be used either to create a higher order method or produce an error estimate for a
given representation. In the latter case, this provides the basis for adaptive sampling. Both the higher order
method and the adaptive sampling methods appear to be orders of magnitude faster than Monte-Carlo meth-
ods when the dimension of the parameter space is not too large. In the case of high dimensional parameter
space, we can use the information with standard techniques to enhance the Monte-Carlo method.

The adjoint problem and generalized Green’s function are a powerful tools for the study of differential
equations. Our approach to a posteriori analysis is related to applications of the adjoint problem to the anal-
ysis of equation sensitivity, optimization, and data assimilation.

2 s 4 s,
n x 10

Fig. 2. Using the Monte-Carlo method to approximate the average value of Jf + )é over [—1,1]1x [—1,1]. We plot values of the error (n) as
a function of increasing n for 10 different sequences, along with the bounds given by the Law of the Iterated Logarithm.
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The paper is organized like this. We first introduce the new approach in a simple finite-dimensional exam-
ple, where the ideas are relatively easy to describe. We then extend the approach to ordinary differential equa-
tions and discuss its approximation properties. We explain how the approach can be used to create a higher
order method or to produce an error estimate for information computed from a representation. The estimate
also provides the basis for adaptive sampling. Finally, we present applications to a control problem for the
nonlinear Schaefer model of a fish population, the chaotic Lorenz system, and an SIR model of disease with
birth/death processes.

1.1. Basic concepts in probability

We use a few useful concepts from probability. We consider the uncertain input 4 to be random vector on a
probability space (Q, 4, P), where Q is a set of outcomes, % a g-field of sets in Q, and P is a probability mea-
sure on 4. A random vector or variable X is a measurable function on this probability space with range con-
tained in R? or R'. To each random vector X, there is a distribution measure py on the Borel subsets of R¢
defined by ux(A4)= P(X € A), which gives the probability that X takes values in A4. In the case that
pi(A) =0 = ux(A) =0, where p; is the standard Lebesgue measure on R?, then uy is absolutely continuous
with respect to p; and there exists a function p : RY — R such that uy(A4) =J,pdu.. This function is called
the probability density of X.

An example of a density is the uniform distribution associated with a set A with positive, finite Lebesgue
measure, which has density p(s) = 1/uy(A) for all s € 4 and is zero otherwise. Another example is the multi-
variate normal distribution with density

1 1 Tl }

p(s) =————~expy—=(s—p) 2 (s— ,

= G p{-36-n"= 6

where X is a symmetric positive-definite matrix and g is the mean.
The function

Fx(s) =P(X; <s1,..., X4 < 84)

is called the cumulative distribution function of X. A random vector always has a cumulative distribution func-
tion. In general, X has a density if Fy is differentiable, in which case p(s) = 0y, - - - 0;,Fx.

Finding the distribution of a random vector X means determining the probabilities of X taking various sets
of outcomes. We can determine the distribution by computing the distribution measure, the density (if it ex-
ists), or the cumulative distribution function of X. For numerical reasons, we approximate cumulative distri-
bution functions. For visual reasons, we usually compare densities using plots.

2. A new approach: a finite-dimensional example

We first consider the problem of solving the finite-dimensional nonlinear system of equations,
f(x;2) = b, (1

for x € R", where the parameter 4 is a random vector in R? and f : R"™ — R" is smooth in both variables. In
practice, the motivation for solving a nonlinear equation is often to compute a specific piece of information, or
a quantity of interest, involving the solution. In many cases, this information can be represented as a linear
functional of the solution, which is a relatively low-dimensional piece of information that is easier to compute
accurately than the entire solution. By the Riesz representation theorem, there is a vector ¥ € R”" such that
(x,¥) vyields the quantity of interest, where (,) is the Euclidean inner product. For example,
Y =(1,0,...,0)" yields the first component while ¥ = (1,1,...,1)"/n yields the average of the components.

We begin by assuming that 4 is distributed closely about some reference value u (an assumption that is
relaxed later), and we solve the deterministic problem

fim)=b

for y. To estimate the quantity of interest corresponding to v, we use the generalized Green’s vector ¢ that
solves the adjoint to the linearized problem,
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AT =1y,
where 4 = D fly.p). If, for example, ¥ = (1,0,...,0)", then ¢ is directly analogous to a Green’s function in
differential equations. The standard variational argument yields

(x,9) = (x,4"¢) = (4x, $),

which is the analog of the standard representation formula for the Green’s function. Computing a Taylor
expansion of faround (y,u), we obtain

f(x;2) =f ;) + Dof (0; ) (x — ) + Dif (y; ) (2 — p) + R,

where R is a high order remainder. From this, we see that

and so

(x.¥) = . ¥) — (DS im) (A — 1), ¢) — (R, ).

Neglecting the remainder term, we obtain an approximation for the quantity of interest corresponding to 4 in
terms of the quantity of interest at the reference value u plus an expression involving the change in fdue to the
parameter variation, and the generalized Green’s vector ¢,

(x, ) = 0.¥) — (Dif ;) (4 — ), ). (2)

Taking the inner product with the generalized Green’s vector ¢, which we can view as a discrete convolution,
translates the variations in the model into variation in the solution.
If we think of 4 — p as a random vector with a distribution, the expression

—(Dif y;m) (4 — p), d)

yields a random variable with a new distribution. This new random variable is a linear approximation to the
true random variable near the reference value. We call using (2) in this way the Higher Order Parameter Sam-
pling Method or HOPS.

As a first application, we consider:

2,2
/11)(1 +x2 = 1,
X —Aax3 =1,

where 41,4, > 0 are the parameters. Solutions x = (x,X,) are intersections of the hyperbola and the ellipse. We
concentrate on the solution in the first quadrant. We take A, and 7, to be independent with A; uniformly dis-
tributed on u; + 0.1 and 4, normally distributed N(u,,0.1) for some fixed (p,u,). We choose the dual data
¥ =(0,1)" so that {x,i) = x.

We first use two Monte-Carlo computations by solving the system for n» = 1000 and » = 10,000 points
drawn from the distribution of (1y,4,). Next, we use HOPS by calculating y = (7,,7,) at the mean value
(p1,12) = (0.5,1), numerically solving for the generalized Green’s vector, and approximating (2). To compare
the results, we compute the value of the HOPS approximation at the 10,000 points used in the Monte-Carlo
computation and plot the resulting histograms in Fig. 3. (See Sections 10.1 and 4.1 for details on producing the
plots of densities and comparing accuracy of approximate density functions.) The savings in computational
effort are extreme since HOPS requires only one solution of the nonlinear system, one solution to the linear
adjoint problem, and then a vector dot product for each evaluation of the HOPS model. The Monte-Carlo
approach, on the other hand, requires the solution to the nonlinear system for 10,000 points.

In general, linearization around a single point is insufficient to describe the response of the system to vari-
ations throughout the parameter space. In this example, near (u;,u,) = (0.89,1) the solution is more sensitive
to variations in the parameter. We can see the effect in the degraded accuracy of a HOPS approximation at the
reference value, see Fig. 3. A small Monte-Carlo computation with 1000 simulations appears more accurate
than the one point linear approximation. In Fig. 4, we plot the norm of the generalized Green’s vector against
values of 1;. The increase in the norm as 4, approaches 1 indicates the increase in sensitivity of the solution. To
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Fig. 3. Comparisons of estimated densities for Monte-Carlo computations using 1000 and 10,000 points along with HOPS one point
linear approximations. On the left, y; = 0.5, y, = 1, and on the right, y; =0.89, u, = 1.
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Fig. 4. On the right, we plot |¢| for 1, near 1. On the left, we plot approximate densities for Monte-Carlo computations using 1000 and
10,000 points and a HOPS approximation using five points for p; = 0.89, u, = 1.

address this, we compute HOPS approximations at five points chosen uniformly in the parameter set and com-
bine the results to form a piecewise linear approximation (which we also call a HOPS approximation). The
partition for the approximation is taken to be uniformly sized sub-intervals centered at the sample points.
The HOPS approximation requires only 10 solutions to yield an approximation with accuracy comparable
to the 1000 point Monte-Carlo approximation, see Fig. 4.

3. The HOPS method for an ordinary differential equation

We consider the problem of determining the effects of variations in parameters and data on a quantity of
interest computed from the solution of the initial value problem:

x(t;4) = f(x(t;A); 4r), >0,
{x(ov }“) = A‘Ov

where x € R" and f: R"*” — R". The parameter 4 = (41,40)" is in R with d = p + n, where 4, € R” represents
parameters in the model fand 4q € R" represents the initial conditions (which we also consider as parameters).
We consider 4 = A(w) as a random vector on a probability space (2,4, P). Under the standard Lipschitz
assumption on f (see Theorem 2), x(#;4) is a random vector. The set of trajectories indexed by the possible
values of w may be viewed as a collection of random vectors x(#;w) = x(#;A(w)), indexed by ¢. This is a stochas-
tic process, but this process has more structure than a general stochastic process since increments of the pro-
cess are characterized deterministically by (3).

3)
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The methods discussed in this paper extend to non-autonomous systems directly. They also extend with
minor changes to difference equations and partial differential equations. The techniques also can also be
extended to the case of time varying coefficients (stochastic processes).

As discussed above, we consider the practical goal of computing a quantity of interest represented as a
linear functional of the form

T
() = g(h(0) = [ (x(5:0)).(s)) b @
where ¥ is a function of time corresponding to the quantity of interest. Some common choices are:

o Y(s) = (s — 1)(0,...,1,0,...)", which yields the ith component of x(;w) at time f;

e Y(s)=(1,...,1)"/nT, which yields the time average over [0,7] of all the components;

e Y(s)=(0,...,1,0,...)7/T, which yields the time average over [0,7] of a particular component of the
solution.

The first goal is to develop a fast method to approximate the cumulative distribution function F,(x) of ¢
given an arbitrary input distribution for 4. Since we recover the entire distribution, we can compute the density
as well as any desired statistic, e.g. means and moments, or other quantities of the form E[¥(¢q(w))] for mea-
surable functions .. In particular, the plots of densities in this paper are computed using a kernel density esti-
mator on a data set constructed to have the distribution of F3, where g is the computed approximation to g.
See Section 10.1 for details.

We carry out the analog of the variational argument presented in Section 2 and introduce the generalized
Green’s function solving the adjoint problem to the linearized equation:

—b() ~ AP0 =¥(). T>1>0, .
#(T) =0,

where A(t) = D f(y(t);u;) with y(¢) denoting a deterministic solution solving the system (3) for the fixed param-

eter g = (p1.io) "
Arguing as for the finite-dimensional example, see Section 9.1, yields the following representation of the

output value.

Theorem 1. For x, y, ¢ and ¥ as above,

a(i) = / (x ) ds / ) ds+ (o — iy, $(0)) + / (Daf i) — ), ) ds. (6)

The last term on the right-hand side describes the effect of variations in the model parameters. Note, that this term
suggests that knowledge of D, f(y; u,) and ¢ are necessary to accurately estimate the density of the output cor-
responding to variation Ay — py in the input. The second to last term on the right-hand side of (6) describes the
effect of variations in the initial conditions.

The nature of this approximation is described precisely in the following theorem.

Theorem 2. If there is a constant L such that f satisfies the Lipschitz condition,

(x5 40) = f s )| < L(Jx =yl + |41 — ), (7)

forall x,y € A and p,A € A, where the solutions to (3) remain in the set X for all parametersin A and t € [0,T],
then the functional (4) of the solution to (3) satisfies

Va(wl] = V/O (x(s;4), ¥ (s)) s, [] = ([ 1o, ¢(0)) +/0 (Duf (v; )l @) ds, (8)

where [ -] appears since this derivative is a linear operator from R — R, and y, ¢ are defined as above.



D. Estep, D. Neckels | Journal of Computational Physics 213 (2006) 530-556 537

This states that the representation in (6) is a linear approximation to the function ¢ at the parameter value
u. The proof is given in Section 9.2.
The one point HOPS approximation can therefore be written

q(4) = q(u) + (Vq(n), (4 — w)).

The Lipschitz condition (7) is the natural extension of the standard assumption for a local existence and
uniqueness result. For general £, this requires the solution set 7" to be compact. The necessary restrictions
on the parameter set A are highly problem dependent. However, in many cases, it appears that at least we have
to assume that A is compact as well.

For example, consider the model:

{x/:xz, 0<t<T,
x(0) = xo,

where x, is the uncertain parameter. The solution is x(¢) = 1/(x;' — ), which has a finite time blow up at
t = 1/xo whenever x, > 0. Any investigation of the solution over a time interval [0, 7] requires x, to be bounded
above, otherwise there is no solution on any time interval. Less dramatically, consider computing the mean
value of solutions of:

X =/ 0<t<T,

x(0) = xo
with 4 <0. If = N(u,6%) where u <0, the expected values of the possible solutions is E[x(¢)] = xoe*e” /2,
which decays for a short time and then grows exponentially very rapidly! This suggests that a choice of normal
perturbation for the parameter is inappropriate if we are interested in the mean value of the solutions.

In general, the differential equation is usually a valid model only for a certain range of parameters and
ceases to be a relevant model when the parameters exceed this range. For general problems, the assumption
that %" is compact appears to be a natural minimum requirement. For specific problems with good dynamical
behavior, this assumption can be relaxed.

3.0.1. A scalar example

We consider a simple scalar example:
x(t;4) = x(; 1), t>0,
{5 ©
x(0) = xo.

Solving for the generalized Green’s function corresponding to the reference value p and the data
Y(s) = (s — t) yields the one point approximation to the functional ¢,

) = x(6:2) = 260 + ) — ) | ey (53 ) ds, (10)

which is valid when the variance of A(w) is small. The HOPS approximation has the form y(#;4) = a(¢) + 2b(t)
with

a(t) = xo(1 — we)e",  b(t) = xote!.

It is possible to calculate the associated probability densities exactly and we compare them in Fig. 5.
3.0.2. Multi-point HOPS approximations

Generally, we combine HOPS approximations computed at multiple reference values to obtain an accurate
global approximation. We do this in two ways.
In the first approach, we choose a sample { yi}ﬁvzl and then partition the parameter space into a collection of

generalized rectangles {R,-}f,vzl with g; € R; for all i. The corresponding piecewise linear HOPS approximation is
defined
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t,=.04

Densities

0 2 4 6 8 10
Values of the Solution

Fig. 5. True (dashed) and approximate (solid) probability densities for (9) with yo = xo = 10, A(w) uniformly distributed on [-3/2,—1/2],
and Y(s) = o(s — ;) at times {¢;} = {0.04,0.3,1,4}.

N
= (a(w) + (Va(w), (A — m))1a,(4), (11)
i=1
where y, is 1 for 4 € R; and 0 otherwise. By computing the solution at each g; and applying the approximation
to each piece, we expect this piecewise linear approximation to converge in distribution to the variable ¢(4) as
the number of sample points increases.

In the second approach, we use a partition of unity. We let {/1,-}5.\/:1 be a finite open cover of the compact

parameter space A. A Lipschitz partition of unity subordinate to {A;} is a collection of functions {Q}fv , with
the properties:

supp(60;) C 4, and 6, is differentiable on 4;, 1<i<N, (12)

16ill 1,y < € and [[VO;] () < C/diam(4;), 1<i<N, (13)
N

0; is continuous on A and Z Oix)=1, xeQ, (14)

i=1
where C is a constant and diam(A,) is the diameter of A,.

Several partitions of unity satisfying (12) and (13) exist. We use the partition of unity suggested for the
Modified Shepard’s Method by Renka [6]. The support of the partition of unity functions are spheres of radius

Z centered at the sample points {yi}ﬁil, where Z is chosen so that each sphere contains exactly .4 of the sam-
ple points. The partition of unity functions are defined as

0i(x) = M, where W;(x) = (max{% —lx- !‘i|70}>2.

Z;V:I w;(x) Alx — |
Assuming that y; is a point inside A; for i =1,...,N, the approximation is defined as
N
= (g(m) + (Va(m,), (4 — p1)))0:(4). (15)
i=1

4. Reliably accurate parameter sampling

In HOPS, we attempt to improve computational efficiency. Another important goal is to compute informa-
tion from an approximation of the output distribution whose accuracy can be reliably quantified. If we write
the one point HOPS approximation as

q(4) —q(n) = (Vq(n), (4 — p)), (16)

we see that the derivative information (Vg(u),(4 — u)) provides a local estimate of the error that results from
using the sample value g(u) in place of the actual value ¢(4) for 4 near u. In this section, we describe several
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methods that collectively we call Reliably Accurate Parameter Sampling methods, or RAPS, which uses this
derivative information to provide various a posteriori error estimates and bounds.

4.1. Measuring the error in an approximation of a quantity of interest

We start by discussing ways to measure the error in an approximation g of a quantity of interest ¢. The
. . ~ . . N : N
approximation g is constructed using some sample {g,},_, and the corresponding values {g(p,)},_,. We form
the approximate surface using either a piecewise constant function of the form

q(3) =Y _am) 1 (),

where {R;} is some partition consisting of generalized rectangles such that p; € R;, or using a partition of unity
{0;} associated to {u;} as above to form

a(2) = 3 a(m)0i(4).

When 4 is be a random vector of w, we obtain g(w) = g(A(®)) =~ g(A(w)). To measure the error in this
approximation, it is natural to use the expected value the difference of some statistical function of ¢ and
g, 1.e.,

[E(S (q(@)) = F(q(@)))],
where, for example, #(s) = s yields the expected value and .#(s) = (s — E(g))’ yields the variance. In general,
we might choose a collection of such statistical functions to evaluate the accuracy.

A more certain way to guarantee that the approximate distribution converges to the true distribution is to
control the L' norm,

E(lg(@) — g()]), (17)
since if this tends to zero, then this implies convergence in probability and in distribution [7], and the cumu-
lative distribution function F, of ¢ can be approximated arbitrarily well by F;. By recovering the cumulative
distribution function, we can compute any desired statistic, e.g. means and moments, that might be used to
characterize the accuracy of the approximate distribution.

On the other extreme, we can require that information computed from g be close pointwise to the corre-
sponding information computed from ¢g. For example, this is the implicit choice when comparing plots of dis-
tribution and density functions as often done in this paper. This is also a relevant measure in the context of
performing sensitivity analysis.

4.2. Viewing a sample as a piecewise constant approximation

We assume that there is a partition of the compact parameter space A into N generalized rectangles {R,}?/:1

where p; is a point inside R; and ¢(u;) is calculated for i=1,...,N. This results in a piecewise constant
approximation,
N

3(2) = alm)ux,(4). (18)
i=1

In the case that the sample is generated by a Monte-Carlo computation, this interpretation is different than the
standard view of a Monte-Carlo approximation. For example, the Monte-Carlo approximation weights the
sample values of the function equally. If we consider the sample values as defining a piecewise constant
approximation, the natural approximation to the average value is

u Vol(R,)
;g(wi) 7\/01(9) )
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i.e., the sample values are not weighted equally. Nominally, the new interpretation yields a better asymptotic
convergence rate, i.e., O(1/N) versus O(1/y/N), however, the constants in the deterministic error bound grow
rapidly as the dimension of the parameter space increases.

We provide evidence below that interpreting a sample as a piecewise constant approximation can be useful
when the parameter space is not too high dimensional. Assuming that the error is measured by the expected
value of the difference, we can represent it as a sum of “element contributions”,

E(g(o) - §(0)) = / (4(4(0)) ~ 3(4(0)) dP(0) = 3 / (4(2) - §(2) 4w (2),

Q

where p;(A) = P(A € A) for Borel sets A. Using a Taylor expansion in each of the R; as in HOPS, we obtain
approximation of the expected value of the error

=y / (Vglin). (2 = ) diy (2).

Similarly, for the error in a statistical function,

=2 / S (g(m)) (Vg (= — 1)) diy (2) )

and in the L' norm,

=3 | 1atw). e = )l o) (20)

&P is an approximation in the sense that if V¢ is continuous, then a sequence of such approximations com-
puted on partitions with rectangles of decreasing size converges to the true estimate. Unfortunately, this is se-
verely affected by the dimension of the parameter space.

4.2.1. A scalar example

To illustrate this approach, we consider the scalar example (9) with xo=1 and / taken uniformly in
[—0.5,0.5]. The results for the estimate of the error in the L' norm of ¢(4) = x(,4) at T =10 are given in
Fig. 6. We also plot results for the L' norm of the error in the second moment, E[|g(4)* — §(4)*|], and corre-
sponding estimate at 7= 5.

4.3. Computing an approximate error function using a partition of unity

In a second approach, we use Renka’s partition of unity to create both an approximation from a given sam-
ple and an approximate error function. The approximation is defined as

4(0) =D _a(m)0:(2), A€ A, (21)

To estimate the expected value of the error, we use (14) to write

N

E(q(0) = 4(@)) = Y E((g(@) — 4(m;))0:()).

i=1

Now using (16), we estimate

E((q(w) — q(m))0:(w)) ~ / (Va(m), (z — 1,))0i(z) dp (2).

A;

We obtain the estimate
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Fig. 6. In the upper left, we plot the error in the L' norm and the estimate for the scalar example (9) for a range of sample points N at
T = 10. In the upper right, we plot the ratio of the estimate to the error. In the lower left, we plot the error and estimate for the L' norm of
the second moment at 7'= 5. In the lower right, we plot the ratio of the estimate to the error.

&P = ; /A,.<VQ(M')7 (z— m))0i(z) dp, ().

Similarly, we obtain approximations for the error in the expected value of any statistical function,

6P = XN: /A (S (a(m))Va(m), (z = m))0i(z) dy (2) (22)
and the L' n:rlm, |

6P = Zi: /A [(Va(m), (z = 1)) 0:(2)| diy (). (23)
Since o

/A i(z — 1;)0:(z) duy(2) = /Q (q(4(@)) — p;)0:(A(w)) dP(w) = E((4 — p;)0:)
in the case of the expected value of a statistical function, we can rewrite (22) as

6P = XN:@”I(Q(M))VQ(F,-%E((A —1;)0:)). (24)

i=1

4.3.1. A scalar example

To illustrate this approach, we again consider the scalar example (9) with xo =1 and A taken uniformly in
[—0.5,0.5]. The results for the estimate of the error in the L' norm at 7= 10 and the estimate of the L' norm of
the error in the second moment at 7= 5 are given in Fig. 7.
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Fig. 7. On the left, we plot ratio of the estimate to the error in the L! norm for the scalar example (9) at 7= 10. On the right, we plot the
ratio of the estimate to the error for the L' norm of the second moment at 7= 5. Compare to Fig. 6.

5. Fast adaptive parameter sampling

We observe that obtaining an accurate estimate of the error for a given sample opens up the possibility of
optimizing the sample process in order to reach a desired accuracy with minimal computational cost. This can
offset the overhead associated with computing the estimate.

In general, constructing an optimal sample set is a complicated and difficult nonlinear problem. In this pa-
per, we borrow ideas from adaptive finite elements to construct two Fast Adaptive Sampling Procedures, or
FAPS, for finding an approximate solution. The goal of the adaptive strategy is to find a set of sample points
that has approximately minimal size yet yields the desired accuracy in the computed information. The adap-
tive strategy works in an iterative fashion. Given a current set of sample points, we estimate the local contri-
butions to the error for the sample and choose additional sample points in regions in which the contributions
to the error are estimated to be largest.

This involves several choices. First, we must choose an error estimate or bound to guide the enrichment
decision. Using an optimization approach requires an estimate or bound that can be written as a sum over
local contributions with non-negative summands. The estimates (19) and (22) might be used to determine that
the computed information is not sufficiently accurate, but they cannot be used for standard adaptive error
control because they allow cancellation of errors through the domain. Once the decision to enrich the current
sample is made, we use a bound derived from the estimates (20) or (23) for the L' norm of the error to choose
additional sample points.

Another important choice is a procedure for adding additional sample points to a given sample set. We
describe two approaches below.

The choice of the initial set of sample points is third important decision. The standard approach is to use a
coarse set in order to increase the possibility of achieving a nearly optimal final sample set. On the other hand,
using too coarse an initial sample set can mean that the error estimate fails to recognize significant behavior.
Another aspect is the manner in which the initial set is constructed, e.g. the initial sample set might be uni-
formly spaced or it might be generated by a Monte-Carlo method.

5.1. Adaptive sampling via a standard h-refinement approach

The first approach we describe is analogous to adaptive error control for finite element methods. We use
one or more of the estimates (19) and (20) to decide if a given sample set needs to be enriched. If enrichment
is needed, we use a bound derived from (20) to choose additional sample points. We add points using a strat-
egy that is closely analogous to the standard /-refinement strategy in adaptive finite element methods. We de-
fine £7° to be the approximate contribution to the error bound from rectangle R;, i.e.,

£ = / (V) (2 — )} disy3).
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The adaptive strategy is to refine some fraction of the rectangles on which &% is largest. We refine along one
dimension at a time since ¢ may be very sensitive to changes in one parameter, but not in others. To measure
the contribution to the error bound from each dimension, we define c«?gz, k=1,....,d, by

6% = [ 1ouan) — il ) 03)

where z=(z',....2%" and u, = (1, ..., u?)" s0

&> = Z & < Z Z .

For a rectangle where &7° is large enough for refinement, we find the maximum contribution &7, k =1,....d
and we divide the rectangle along this dimension. Since the value at the center of the rectangle is known, we split
in thirds along this dimension, compute the values at the centers of the two new rectangles. We iterate until the
selection of estimates (19) and (20) used to judge accuracy of the computed information are bounded by TOL.

In the examples below, we use a uniform initial partition of the parameter space, which is reasonable when
the parameter space does not have high dimension.

We illustrate the rectangular FAPS in Sections 7.1-7.3 below.

5.2. Adaptive sampling according to a density representing the error

In another approach, we use a partition of unity to generate one or more of the estimates (22) and (23) and
construct a density function using the element contributions in the estimate. The integral mean value theorem
implies that the approximation ™" to the expected value is itself approximated by

Eloe (4) _Z<VQ(F,) 4= 1)0:(2)f3(4)

at each point A, where f; is the density corresponding to u;. We use the error estimate |61y | as a sampling

density to select additional points in such a way that there is increased sampling in regions where this function
is relatively large. We can do this either in a deterministic fashion or using a Monte-Carlo approach.
We illustrate this adaptive approach in Section 7.1 below.

5.2.1. Creating a density that indicates regions with insufficient sampling
There are other ways to create a density function. Returning to the local error estimate
lg(4) — q(u)| < |Va(pi)llA — u, the values of g(4) are approximated by ¢(u;) to within a tolerance TOL for
all A in the ball of radlus r;=TOL/|Vg(p;)| centered at u; with volume V; = n¥/*4/I'(d/2 +1). We set
= (XL, V") Lso oY, # = 1. We interpolate the set of values { #/V;} at the points {u;} to obtain a density
function that descrlbes the degree to which the function is represented pointwise by its values at {u;}. Note
that the dimension-dependent constants in V; cancel in the ratio V/V;. In fact,

-1
V:Wwwz{i<W%wv 26
Vi S vaw)lt \ & \IValm)l

As d increases, the difference in the values of the density function corresponding to large and small values of

|[Vg(u;)| is exaggerated. In contrast, simply removing the balls from the parameter space before selecting the

additional sample points has decreasing effect on the selection process as the dimension increases.
To illustrate, we consider the function

q(2) = e S 10,0175 +0.0123 (27)

on [0,4]x [0,4]. We plot ¢ in Fig. 8 for a uniform 21 x 21 set of sample points. In Fig. 9, we plot the regions in
which the function is approximated pointwise to within a tolerance of TOL = 0.01 for three sets of uniformly
spaced sample points.
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1 2 3 4

Fig. 8. Surface and contour plots of function ¢ (27) corresponding to TOL = 0.01 and a uniform set of 12 x 12 sample points. Dark areas
indicate regions in which ¢ is not approximated pointwise as well.

0 1 2 3 4

Fig. 9. Plots of the regions in which the function is approximated pointwise to within a tolerance of TOL = 0.01 for three sets of uniformly
spaced sample points. From left to right, the sets have 6 x 6, 12 x 12, and 18 x 18 points, respectively. Shaded regions indicate areas where
q is not sufficiently well approximated.

This approach extends directly to the estimate (23) after choosing a partition of unity. For example, sup-
pose that A; is a ball of radius r; centered at g; with volume V;. We can bound

[ 16 = m)0@1dm(a) 5 Crae(4) = Crufia) V.

where 4, is some point in A;, C is a constant that depends on the construction of 6;, and

N
67 < CIVg(u)fa(hi)ri V.

i=1

We seek to choose the minimum number of points such that
N
Z CIVq(m)|rifi(4:)V; < TOL.
P
The standard “‘Principle of Equidistribution” argument implies that the optimal result is obtained when the

summands are equal, which yields a formula for r;. Defining V' = (31, 7, 1)71 as above, we find that in this
case,

df(d+1 N d/@+1\ !
Vo (Tl (Z ([Tatwlich)) ) | 28)

Vi (V) fa(a)) T Va ()l (4)

Using this, we produce a density function as described in Section 5.2.1. Note that in sharp contrast to (26),
there is decreasing effect on the values of the density as d increases. This suggests that the evaluation of ¢

=1
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should not be treated as a purely pointwise interpolation problem when the parameter space has large
dimension.
We illustrate this adaptive approach in Section 7.1 below.

6. Application to Monte-Carlo methods

The information about the derivative of the quantity of interest at a reference point that we compute using
the generalized Green’s function can also be used in context of some standard techniques for improving the
Monte-Carlo method. This is important when the parameter space has high dimension, which can have a neg-
ative impact on the HOPS and FAPS procedures described above. As an example, we briefly describe appli-
cations to the methods of control variates and stratified sampling [8]. Detailed descriptions, analysis, and
computations are presented in [9].

6.1. The method of control variates

In the method of control variates, we write the expected value of a statistical quantity

i) = [ 2a@h@d= [ 1760 - a@h@d+ [ sa@n@e @)

RP

where . is a statistical function, see Section 4.1. We choose g to be either the FAPS or HOPS approximation
to ¢.

The second integral on the right of (29) is relatively easy to compute since it is the (biased) estimator
E[#(q)]. We evaluate the first integral on the right of (29) by taking samples 4;~f;, i=1,...,N, and
evaluating

dy:%Z}%MM—yWM)

The estimator for E[¥(q)] is E[¥(q)] + %, which is unbiased and has a smaller variance than the original
problem when ¢ is a good approximation to q.

6.2. The method of stratified sampling using FAPS

We once again write E[¥(q)] as in (29), and use a stratified Monte-Carlo estimator [8] for E[¥(q)],
~ D i
E7(q)]~) " > 7(atr ),
i1
where R;, i=1,...,r are a disjoint union of the support of f;,

MZAﬁ@%

the n; are integers greater than or equal to 1, and yj., j=1,...,n; are independent samples drawn from the
densities '

4M®=éﬁ®mﬂ%

for i=1,...,r. These samples are created by using the Accept—Reject method for the densities f;.

We use FAPS in conjunction with this estimator by first allocating Ny samples for partitioning the param-
eter space according to the L, error indicator (20). We choose n; directly proportional to the quantity &7°
above. This choice utilizes the deterministic information about steep gradients in ¢, and avoids the bias which
is introduced by gridding the parameter space and sampling at box centers.
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Fig. 14. Comparison of the K-S statistic for the HOPS, rectangular FAPS, and Monte-Carlo methods applied to (30). The error for the
Monte-Carlo method is the average over 20 cases. A 70,000 point Monte-Carlo simulation is taken as the reference distribution.

the (K-S) statistic, especially for a small number of samples. The results suggest that simulations of less that
1000 points compare favorably with 10,000 point Monte-Carlo simulation.

We conclude by presenting some results for the partition of unity FAPS applied to (30) with H =0,
xo=1, and T=3. We first consider sampling according to the density described in Section 5.2, which
represents the error. In Fig. 15, we plot the true error (g(4) — q(4))f;.(4) and the approximation &}y (4)
computed using 20 sample points. To choose additional sample points according to the computed density,
we employ a Markov Chain Monte-Carlo method [10] that creates a large sample of points with distribution
|62, from which we draw a few points for evaluation. In Fig. 16, we plot approximate densities computed

loc

using FAPS.
7.2. The chaotic Lorenz model

We investigate the Lorenz equations:
).Cl = O'(Xz —Xl),
).62:}")(51 — X2 — X1X3, (31)
).63 = X1X — bX3,
where we fix the parameters o,r,b at standard values believed to yield chaotic behavior as well as the initial

values x, o = 0, x50 = 24, but take the initial value for x; uniformly distributed in [—2,2]. We follow the value
of the x; coordinate of the solution for a sequence of times, so that the functional is g(4) = g(x10) = x1(£;X1.0)-

True Error Approximate Error
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3.5 : 3.5 : ; . . :
-2 -1 0 1 2 -2 -1 0 1 2
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Fig. 15. On the left, we plot the true error. On the right, we plot the partition of unity FAPS approximation &5y (4) computed from 20

sample points using the density described in Section 5.2. The sample points are indicated with circles.
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Fig. 16. We plot the approximate densities computed from a partition of unity FAPS using a sample of 80 points along with a Monte-
Carlo computation with 30,000 points. On the left, we show the density described in Section 5.2, and on the right, we use the density

described in Section 5.2.1.

All trajectories approach an attractor and the initial distribution is eventually spread onto this attractor, see
Fig. 17. However, since the problem is chaotic, solutions that start close to ea